Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543468

RESUMO

A traumatic hemorrhage is fatal due to the great loss of blood in a short period of time; however, there are a few biomaterials that can stop the bleeding quickly due to the limited water absorption speed. Here, a highly absorbent polymer (HPA), polyacrylate, was prepared as it has the best structure-effectiveness relationship. Within a very short period of time (2 min), HPA continually absorbed water until it swelled up to its 600 times its weight; more importantly, the porous structure comprised the swollen dressing. This instantaneous swelling immediately led to rapid hemostasis in irregular wounds. We optimized the HPA preparation process to obtain a rapidly water-absorbent polymer (i.e., HPA-5). HPA-5 showed favorable adhesion and biocompatibility in vitro. A rat femoral arteriovenous complete shear model and a tail arteriovenous injury model were established. HPA exhibited excellent hemostatic capability with little blood loss and short hemostatic time compared with CeloxTM in both of the models. The hemostatic mechanisms of HPA consist of fast clotting by aggregating blood cells, activating platelets, and accelerating the coagulation pathway via water absorption and electrostatic interaction. HPA is a promising highly water-absorbent hemostatic dressing for rapid and extensive blood clotting after vessel injury.

3.
Molecules ; 29(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276624

RESUMO

LR004 is a novel chimeric (human/mouse) monoclonal antibody developed for the treatment of advanced colorectal carcinoma with detectable epidermal growth factor receptor (EGFR) expression. We aimed to investigate the preclinical pharmacokinetics (PK) and in vivo biodistribution of LR004. The PK profiles of LR004 were initially established in rhesus monkeys. Subsequently, 125I radionuclide-labeled LR004 was developed and the biodistribution, autoradiography, and NanoSPECT/CT of 125I-LR004 in xenograft mice bearing A431 tumors were examined. The PK data revealed a prolonged half-life and nonlinear PK characteristics of LR004 within the dose range of 6-54 mg/kg. The radiochemical purity of 125I-LR004 was approximately 98.54%, and iodination of LR004 did not affect its specific binding activity to the EGFR antigen. In a classical biodistribution study, 125I-LR004 exhibited higher uptake in highly perfused organs than in poorly perfused organs. Prolonged retention properties of 125I-LR004 in tumors were observed at 4 and 10 days. Autoradiography and NanoSPECT/CT confirmed the sustained retention of 125I-LR004 at the tumor site in xenograft mice. These findings demonstrated the adequate tumor targeting capabilities of 125I-LR004 in EGFR-positive tumors, which may improve dosing strategies and future drug development.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Animais , Camundongos , Distribuição Tecidual , Anticorpos Monoclonais , Receptores ErbB/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular Tumoral
4.
Carbohydr Polym ; 329: 121758, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286539

RESUMO

In this study, a novel and accurate quantitative analysis method for the direct determination of chitosan (CS) in aqueous solutions using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) is presented. By detecting the mass spectrum response intensity of a series of CS characteristic ion pairs, the sample concentration (abscissa) was linearly fitted with the total ion current (TIC) response intensity of its characteristic ion pairs (ordinate). A reliable standard curve was derived for quantifying CS in the range of 125-4000 ng/mL. Under the detection conditions, this CS quantification method yielded acceptable specificity (no interference peak), linearity (with correlation coefficient (r2) values >0.999), precision (acceptable limit RSDr < 3 %, RSDR < 6 %), accuracy (RE within the acceptable limits of ±5 %), and stability (acceptable limit RE within ±5 %, RSDr < 3 %). Moreover, the applicability of measurement was verified when a series of substrates did not interact with CS in the solution. Results have verified the applicability of this method for determining CS content in different composites. This study provides a method for determining CS content with significant practical value and economic benefit.


Assuntos
Quitosana , Espectrometria de Massas em Tandem , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos
5.
Molecules ; 28(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067486

RESUMO

In recent years, the coagulation properties of inorganic minerals such as kaolin and zeolite have been demonstrated. This study aimed to assess the hemostatic properties of three local clays from China: natural kaolin from Hainan, natural halloysite from Yunnan, and zeolite synthesized by our group. The physical and chemical properties, blood coagulation performance, and cell biocompatibility of the three materials were tested. The studied materials were characterized by using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). All three clays showed different morphologies and particle size, and exhibited negative potentials between pH 6 and 8. The TGA and DSC curves for kaolin and halloysite were highly similar. Kaolin showed the highest water absorption capacity (approximately 93.8% ± 0.8%). All three clays were noncytotoxic toward L929 mouse fibroblasts. Kaolin and halloysite showed blood coagulation effects similar to that exhibited by zeolite, indicating that kaolin and halloysite are promising alternative hemostatic materials.


Assuntos
Hemostáticos , Zeolitas , Animais , Camundongos , Argila/química , Caulim/farmacologia , Caulim/química , China
6.
Molecules ; 28(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37959868

RESUMO

Radiation-induced skin injury (RISI) is a frequent and severe complication with a complex pathogenesis that often occurs during radiation therapy, nuclear incidents, and nuclear war, for which there is no effective treatment. Hyaluronan (HA) plays an overwhelming role in the skin, and it has been shown that UVB irradiation induces increased HA expression. Nevertheless, to the best of our knowledge, there has been no study regarding the biological correlation between RISI and HA degradation and its underlying mechanisms. Therefore, in our study, we investigated low-molecular-weight HA content using an enzyme-linked immunosorbent assay and changes in the expression of HA-related metabolic enzymes using real-time quantitative polymerase chain reaction and a Western blotting assay. The oxidative stress level of the RISI model was assessed using sodium dismutase, malondialdehyde, and reactive oxygen species assays. We demonstrated that low-molecular-weight HA content was significantly upregulated in skin tissues during the late phase of irradiation exposure in the RISI model and that HA-related metabolic enzymes, oxidative stress levels, the MEK5/ERK5 pathway, and inflammatory factors were consistent with changes in low-molecular-weight HA content. These findings prove that HA degradation is biologically relevant to RISI development and that the HA degradation mechanisms are related to HA-related metabolic enzymes, oxidative stress, and inflammatory factors. The MEK5/ERK5 pathway represents a potential mechanism of HA degradation. In conclusion, we aimed to investigate changes in HA content and preliminarily investigate the HA degradation mechanism in a RISI model under γ-ray irradiation, to consider HA as a new target for RISI and provide ideas for novel drug development.


Assuntos
Ácido Hialurônico , Pele , Ácido Hialurônico/farmacologia , Pele/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Oxirredução
7.
Molecules ; 28(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37630371

RESUMO

Astragaloside IV (AS-IV) is one of the main active components extracted from the Chinese medicinal herb Astragali and serves as a marker for assessing the herb's quality. AS-IV is a tetracyclic triterpenoid saponin in the form of lanolin ester alcohol and exhibits various biological activities. This review article summarizes the chemical structure of AS-IV, its pharmacological effects, mechanism of action, applications, future prospects, potential weaknesses, and other unexplored biological activities, aiming at an overall analysis. Papers were retrieved from online electronic databases, such as PubMed, Web of Science, and CNKI, and data from studies conducted over the last 10 years on the pharmacological effects of AS-IV as well as its impact were collated. This review focuses on the pharmacological action of AS-IV, such as its anti-inflammatory effect, including suppressing inflammatory factors, increasing T and B lymphocyte proliferation, and inhibiting neutrophil adhesion-associated molecules; antioxidative stress, including scavenging reactive oxygen species, cellular scorching, and regulating mitochondrial gene mutations; neuroprotective effects, antifibrotic effects, and antitumor effects.


Assuntos
Astrágalo , Saponinas , Triterpenos , Saponinas/farmacologia , Triterpenos/farmacologia , Proliferação de Células
8.
Front Pharmacol ; 14: 1171293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274104

RESUMO

The increasing application of nuclear technology, the high fatality of acute radiation syndrome (ARS) and its complex mechanism make ARS a global difficulty that requires urgent attention. Here we reported that the death receptor 5 (DR5), as well as its ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), were both significantly upregulated after irradiation in mice with 6 Gy γ-ray single radiation. And by intravenously administrated with soluble DR5 fusion protein (sDR5-Fc), the competitive antagonist of DR5, the excessive apoptosis in the radiation-sensitive tissues such as spleen and thymus were significantly inhibited and the radiation-induced damage of spleen and thymus were mitigated, while the expression of apoptosis-inhibiting proteins such as Bcl-2 was also significantly upregulated. The biochemical indicators such as serum ALP, AST, ALT, TBIL, K, and Cl levels that affected by radiation, were improved by sDR5-Fc administration. sDR5-Fc can also regulate the number of immune cells and reduce blood cell death. For in vitro studies, it had been found that sDR5-Fc effectively inhibited apoptosis of human small intestinal mucosal epithelial cells and IEC-6 cells using flow cytometry. Finally, survival studies showed that mice administrated with sDR5-Fc after 9 Gy γ-ray single whole body radiation effectively increased the 30-day survival and was in a significant dose-dependent manner. Overall, the findings revealed that DR5/TRAIL-mediated apoptosis pathway had played important roles in the injury of ARS mice, and DR5 probably be a potential target for ARS therapeutics. And the DR5 apoptosis antagonist, sDR5 fusion protein, probably is a promising anti-ARS drug candidate which deserves further investigation.

9.
Toxicology ; 486: 153449, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738820

RESUMO

Radon (222Rn) is a naturally occurring radioactive gas. Forty percent of the natural radiation to which the human body is exposed comes from radon gas. Long-term exposure to high concentrations of radon induces systemic damage. However, the effect of such exposure on gut microbiota still remains unclear. We explored the effects of radon exposure on gut microbiota and its metabolites short-chain fatty acids (SCFAs) in BALB/c mice by cumulative inhalation of radon at 30, 60, and 120 working level months (WLM). The radon-exposed mice showed slow body weight gain, decreased serum triglycerides and low-density lipoproteins, decreased diversity, lower community structure, and altered abundance of the gut microbiota. Lachnospiraceae, Amaricoccus, and Enterococcus could differentiate the IR30, 60, and 120 WLM groups, respectively. Meanwhile, radon exposure affected the metabolic functions of the gut microbiota, mainly carbohydrate, amino acid, and lipid metabolic pathways. The altered abundance of microbiota and resulting reduced levels of SCFAs may aggravate the damage caused by radon exposure.


Assuntos
Microbioma Gastrointestinal , Radônio , Humanos , Animais , Camundongos , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/farmacologia , Radônio/toxicidade
10.
J Trauma Acute Care Surg ; 94(4): 608-614, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36728318

RESUMO

BACKGROUND: Control of massive hemorrhage from penetrating wound sites is difficult in both combat and civilian settings. A new hemostatic dressing, sodium polyacrylate (PAAs)-based bag (PB), based on PAAs is designed for the first aid of massive penetrating hemorrhage. This study aimed to investigate the efficacy of PB in a penetrating trauma model in swine. METHODS: A complex groin penetrating injury was produced in swine by completely excising the femoral vessels and surrounding muscles. After 15-second free bleeding, 18 healthy Guizhou female swine were administered PB (n = 6), CELOX-A (n = 6; Medtrade Products, Crewe, United Kingdom), or standard gauze (n = 6) for hemostatic intervention, followed by 3-minute compression if the bleeding persisted, with subsequent observation continuing for 1 hour. The primary outcomes included initial hemostasis, the incidence of applying manual pressure, and application time. RESULTS: Sodium polyacrylate could rapidly absorb the liquid to expand, crosslink with a large number of red blood cells, induce cellular morphological alteration, and promote blood coagulation. Sodium polyacrylate-based bag and CELOX-A initiated and sustained hemostasis for 60 minutes, whereas 0% of the standard gauze achieved initial hemostasis. Maximum number of manual compressions were applied in standard gauze (6 of 6 [100%]), followed by CELOX-A (5 of 6 [80%]), while no manual pressure was required in the case of PB (0 of 6 [0%]). Application time for PB (19.0 ± 4.6 seconds) was significantly less than CELOX-A (169.0 ± 73.5 seconds) and standard gauze (187.8 ± 1.7 seconds). CONCLUSION: We prepared a type of superabsorbent PAAs and made an original hemostatic dressing, PB. It can rapidly achieve durable hemostasis in the groin-penetrating trauma hemorrhage swine model without any external compression. The packet form makes PB easy to deploy and remove from wounds. Therefore, PB could be a promising hemostatic candidate for controlling penetrating hemorrhage.


Assuntos
Hemostáticos , Ferimentos Penetrantes , Animais , Feminino , Bandagens , Modelos Animais de Doenças , Artéria Femoral/lesões , Hemorragia/etiologia , Hemorragia/terapia , Técnicas Hemostáticas , Hemostáticos/uso terapêutico , Suínos , Ferimentos Penetrantes/complicações
11.
Int J Nanomedicine ; 18: 679-691, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816331

RESUMO

Introduction: Silver sulfadiazine (AgSD) is widely used in burn wound treatment due to its broad-spectrum antibacterial activity. However, its application in wound healing is greatly hindered by the low solubility of AgSD particles and their cellular cytotoxicity. Herein, we studied the safety and in vivo efficacy of nano-sized silver sulfadiazine loaded in poloxamer thermosensitive hydrogel (NS/Gel). Methods: In NS/Gel, silver sulfadiazine was prepared into silver sulfadiazine nanosuspension (NS) to improve the solubility and enhance its antibacterial activity, whereas the poloxamer thermosensitive hydrogel was selected as a drug carrier of NS to achieve slow drug release and reduced cytotoxicity. The acute toxicity of silver sulfadiazine nanosuspension was first evaluated in healthy mice, and its median lethal dose (LD50) was calculated by the modified Karber method. Furthermore, in vivo antibacterial effect and wound healing property of NS/Gel were evaluated on the infected deep second-degree burn wound mice model. Results: The mortality ratio of mice was concentration-dependent, and the LD50 for silver sulfadiazine nanosuspension was estimated to be 252.1 mg/kg (230.8 to 275.4 mg/kg, 95% confidence limit). The in vivo dosages used for burn wound treatment (40-50 mg/kg) were far below LD50 (252.1 mg/kg). NS/Gel significantly accelerated wound healing in the deep second wound infection mice model, achieving > 85% wound contraction on day 14. Staphylococcus aureus in the wound region was eradicated after 7 days in NS/Gel group, while the bacterial colony count was still measurable in the control group. Histological analysis and cytokines measurement confirmed that the mice treated with NS/Gel exhibited well-organized epithelium and multiple keratinized cell layers compared to control groups with the modulated expression of IL-6, VEGF, and TGF-ß. Conclusion: The combination of silver sulfadiazine nanosuspension and thermo-responsive hydrogel has great potential in clinical burn wound treatment.


Assuntos
Queimaduras , Infecção dos Ferimentos , Camundongos , Animais , Sulfadiazina de Prata , Hidrogéis/farmacologia , Poloxâmero , Antibacterianos/farmacologia , Cicatrização , Infecção dos Ferimentos/tratamento farmacológico , Modelos Animais de Doenças , Queimaduras/terapia
12.
Molecules ; 28(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36677811

RESUMO

Pulmonary fibrosis (PF) is one of the sequelae of Corona Virus Disease 2019 (COVID-19), and currently, lung transplantation is the only viable treatment option. Hence, other effective treatments are urgently required. We investigated the therapeutic effects of an approved botanical drug, cepharanthine (CEP), in a cell culture model of transforming growth factor-ß1 (TGF-ß1) and bleomycin (BLM)-induced pulmonary fibrosis rat models both in vitro and in vivo. In this study, CEP and pirfenidone (PFD) suppressed BLM-induced lung tissue inflammation, proliferation of blue collagen fibers, and damage to lung structures in vivo. Furthermore, we also found increased collagen deposition marked by α-smooth muscle actin (α-SMA) and Collagen Type I Alpha 1 (COL1A1), which was significantly alleviated by the addition of PFD and CEP. Moreover, we elucidated the underlying mechanism of CEP against PF in vitro. Various assays confirmed that CEP reduced the viability and migration and promoted apoptosis of myofibroblasts. The expression levels of myofibroblast markers, including COL1A1, vimentin, α-SMA, and Matrix Metallopeptidase 2 (MMP2), were also suppressed by CEP. Simultaneously, CEP significantly suppressed the elevated Phospho-NF-κB p65 (p-p65)/NF-κB p65 (p65) ratio, NOD-like receptor thermal protein domain associated protein 3 (NLRP3) levels, and elevated inhibitor of NF-κB Alpha (IκBα) degradation and reversed the progression of PF. Hence, our study demonstrated that CEP prevented myofibroblast activation and treated BLM-induced pulmonary fibrosis in a dose-dependent manner by regulating nuclear factor kappa-B (NF-κB)/ NLRP3 signaling, thereby suggesting that CEP has potential clinical application in pulmonary fibrosis in the future.


Assuntos
COVID-19 , Fibrose Pulmonar , Animais , Ratos , Bleomicina , Colágeno/metabolismo , COVID-19/metabolismo , Fibroblastos/metabolismo , Inflamação/metabolismo , Pulmão , Miofibroblastos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
13.
J Pharm Sci ; 112(3): 877-883, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36565924

RESUMO

GEN-0828, a proposed clinical candidate for hemophilia and trauma hemorrhage treatment, is a novel recombinant activated human factor VII (rFVIIa). The purpose of this paper is to compare the pharmacokinetics and pharmacodynamics of GEN-0828 in hemophilia B mice with those of NovoSeven®, the only marketed rFVIIa product worldwide., GEN-0828 and NovoSeven® showed similar affinity bioactivity to recombinant tissue factor (rTF) in vitro. Pharmacodynamics data indicated a generally similar hemostatic efficacy (ED50) of GEN-0828 (10.91 KIU·kg-1) and NovoSeven® (18.91 KIU·kg-1) at the doses studied in hemophilia B mice, while GEN-0828 represented a lower initial effective dosage compared with that of NovoSeven® in terms of both blood loss and APTT. GEN-0828 exhibited linear pharmacokinetic profiles in hemophilia B mice at the 30-338 KIU·kg-1 dose range, the comparative pharmacokinetic study with NovoSeven® indicated better characteristics than NovoSeven® in terms of the appropriate higher maximal concentration (Cmax) and area under the plasma concentration-time curve (AUClast) and longer mean residence time (MRT). In conclusion, GEN-0828 was a promising new type of rFVIIa compound with favourable pharmacokinetic and pharmacodynamic profiles.


Assuntos
Hemofilia A , Hemofilia B , Humanos , Animais , Camundongos , Hemofilia B/tratamento farmacológico , Fator VII/farmacocinética , Fator VII/uso terapêutico , Fator VIIa/uso terapêutico , Hemorragia/tratamento farmacológico , Proteínas Recombinantes
14.
J Pharm Anal ; 12(5): 766-773, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36320606

RESUMO

PEP06 is a novel endostatin-Arg-Gly-Asp-Arg-Gly-Asp (RGDRGD) 30-amino-acid polypeptide featuring a terminally fused RGDRGD hexapeptide at the N terminus. The active endostatin fragment of PEP06 directly targets tumor cells and exerts an antitumoral effect. However, little is known about the kinetics and degradation products of PEP06 in vitro or in vivo. In this study, we investigated the in vitro metabolic stability of PEP06 after it was incubated with living cells obtained from animals of different species; we further identified the degradation characteristics of its cleavage products. PEP06 underwent rapid enzymatic degradation in multiple types of living cells, and the liver, kidney, and blood play important roles in the metabolism and clearance of the peptides resulting from the molecular degradation of PEP06. We identified metabolites of PEP06 using full-scan mass spectrometry (MS) and tandem MS (MS2), wherein 43 metabolites were characterized and identified as the degradation metabolites from the parent peptide, formed by successive losses of amino acids. The metabolites were C and N terminal truncated products of PEP06. The structures of 11 metabolites (M6, M7, M16, M17, M21, M25, M33, M34, M39, M40, and M42) were further confirmed by comparing the retention times of similar full MS spectrum and MS2 spectrum information with reference standards for the synthesized metabolites. We have demonstrated the metabolic stability of PEP06 in vitro and identified a series of potentially bioactive downstream metabolites of PEP06, which can support further drug research.

15.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955947

RESUMO

The mole fraction of deacetylated monomeric units in chitosan (CS) molecules is referred to as CS's degree of deacetylation (DD). In this study, 35 characteristic ions of CS were detected using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS). The relative response intensity of 35 characteristic ion pairs using a single charge in nine CS samples with varying DDs was analyzed using 30 analytical methods. There was a good linear relationship between the relative response intensity of the characteristic ion pairs determined using ultrahigh performance (UP) LC-MS/MS and the DD of CS. The UPLC-MS/MS method for determining the DD of CS was unaffected by the sample concentration. The detection instrument has a wide range of application parameters with different voltages, high temperatures, and gas flow conditions. This study established a detection method for the DD of CS with high sensitivity, fast analysis, accuracy, stability, and durability.


Assuntos
Quitosana , Espectrometria de Massas em Tandem , Quitosana/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos
16.
Molecules ; 27(9)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35566097

RESUMO

Cepharanthine (CEP) has excellent anti-SARS-CoV-2 properties, indicating its favorable potential for COVID-19 treatment. However, its application is challenged by its poor dissolubility and oral bioavailability. The present study aimed to improve the bioavailability of CEP by optimizing its solubility and through a pulmonary delivery method, which improved its bioavailability by five times when compared to that through the oral delivery method (68.07% vs. 13.15%). An ultra-performance liquid chromatography tandem-mass spectrometry (UPLC-MS/MS) method for quantification of CEP in rat plasma was developed and validated to support the bioavailability and pharmacokinetic studies. In addition, pulmonary fibrosis was recognized as a sequela of COVID-19 infection, warranting further evaluation of the therapeutic potential of CEP on a rat lung fibrosis model. The antifibrotic effect was assessed by analysis of lung index and histopathological examination, detection of transforming growth factor (TGF)-ß1, interleukin-6 (IL-6), α-smooth muscle actin (α-SMA), and hydroxyproline level in serum or lung tissues. Our data demonstrated that CEP could significantly alleviate bleomycin (BLM)-induced collagen accumulation and inflammation, thereby exerting protective effects against pulmonary fibrosis. Our results provide evidence supporting the hypothesis that pulmonary delivery CEP may be a promising therapy for pulmonary fibrosis associated with COVID-19 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Fibrose Pulmonar , Animais , Benzilisoquinolinas , Disponibilidade Biológica , Bleomicina/farmacologia , COVID-19/complicações , Cromatografia Líquida , Humanos , Pulmão , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/etiologia , Ratos , Espectrometria de Massas em Tandem , Fator de Crescimento Transformador beta1/metabolismo
17.
Molecules ; 27(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35458768

RESUMO

Uncontrolled hemorrhage from trauma or surgery can lead to death. In this study, chitosan/kaolin (CSK) and chitosan/montmorillonite (CSMMT) composites were prepared from chitosan (CS), kaolin (K), and montmorillonite (MMT) as raw materials to control bleeding. The physiochemical properties and surface morphology of CSK and CSMMT composites were analyzed by Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), zeta potentials, and X-ray fluorescence (XRF). The hemostatic mechanism was measured in vitro by activated partial thromboplastin time (APTT), prothrombin time (PT), in vitro clotting time, erythrocyte aggregation, and thromboelastogram (TEG). The hemostasis ability was further verified by using tail amputation and arteriovenous injury models in rats. The biocompatibility of CSK and CSMMT was evaluated by in vitro hemolysis, cytotoxicity assays, as well as acute toxicity test and skin irritation tests. The results show that CSK and CSMMT are promising composite materials with excellent biocompatibility and hemostatic properties that can effectively control bleeding.


Assuntos
Quitosana , Hemostáticos , Animais , Bentonita/química , Bentonita/farmacologia , Quitosana/química , Quitosana/farmacologia , Argila , Hemorragia/tratamento farmacológico , Hemostáticos/química , Hemostáticos/farmacologia , Caulim/farmacologia , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Biomed Res Int ; 2022: 3963681, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265711

RESUMO

Radiation enteritis-clinically manifested as diarrhea, intestinal bleeding, and so on-is frequently caused when the body is exposed to radiation or radiotherapy because the intestine is radiation-sensitive as an abdominal organ. Therefore, strategies to modulate intestinal hemostasis had inspired an important research trend in the process of preventing and treating radiation enteritis. Based on the structural characteristics of montmorillonite (MMT) and the hemostatic drug tranexamic acid (TXA) which was used clinically to treat enteritis, the tranexamic acid-montmorillonite composite material (TXA-MMT) was prepared through intercalation composite technology. According to the analysis of FTIR, XRD, TG-DTG, SEM, and XRF, the prepared TXA-MMT was verified that tranexamic acid could intercalate into layers of montmorillonite. To evaluate the biocompatibility, two experiments were conducted by in vitro hemolysis and in vitro cytotoxicity experiments and results showed that TXA-MMT exhibited good visible biocompatibility. Activated partial thromboplastin time, prothrombin time, and in vitro clotting time were adopted to determine the hemostatic effect of TXA-MMT. Compared with other groups, TXA-MMT revealed a significant decrease in clotting time variations, APTT, and PT. In addition, to investigate the preventive effect of TXA-MMT by the intervention of radiation enteritis mice, inflammatory factors IL-1ß, IL-6, and TNF-α and the content of endotoxin in the serum of mice were detected. It demonstrated that TXA-MMT reduced the levels of these factors. Besides, the expression and the pathological changes of the small intestine tissue of mice were relieved. Our findings suggests that TXA-MMT as a promising intercalation composite has a great potential for application in the field of intestinal hemostasis.


Assuntos
Hemostáticos , Ácido Tranexâmico , Animais , Bentonita/química , Bentonita/farmacologia , Hemostasia , Hemostáticos/farmacologia , Camundongos , Tempo de Protrombina , Ácido Tranexâmico/farmacologia
19.
Int J Biol Macromol ; 200: 273-284, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007632

RESUMO

Effective bleeding control is essential for the reduction of traumatic deaths among civilians and military personnel, particularly for physical visceral and arteriovenous injuries. Materials with good hemostatic properties have recently attracted significant scientific attention. In this study, a novel material of tranexamic acid modified porous starch (TAMPS) was produced through esterification. The structure of the final product was characterized using Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis. The hemostatic effect of TAMPS was preliminarily analyzed via in vitro clotting time, mouse tail amputation model and liver injury model experiments. Hemostatic effect of TAMPS was found to be significantly better than that of the positive control Quickclean. Through the exploration of related hemostatic mechanisms, TAMPS can promote coagulation via rapid fluid absorption and high erythrocyte aggregation capacity. The in vitro cytotoxicity, acute toxicity, and hemolysis tests revealed that TAMPS is safe and nontoxic and has perfect blood compatibility. Therefore, the TAMPS has a great potential for future clinical application as a rapid and multitarget hemostatic material.


Assuntos
Ácido Tranexâmico
20.
Surg Innov ; 29(3): 367-377, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34551638

RESUMO

BACKGROUND: A novel absorbable porous starch hemostat (APSH) based on calcium ion-exchange crosslinked porous starch microparticles (Ca2+CPSM) was developed to improve hemostasis during surgeries for irregular cuts. The aim of this study was to compare its hemostatic efficacy and biocompatibility in a standard rat liver injury model relatively to Arista AH, Quickclean, and crosslinked porous starch microparticles (CPSM, without calcium ion). METHODS: 72 Wistar rats (220g-240 g) were randomly assigned to six groups (Arista, Quickclean, CPSM, Ca2+CPSM, native potato starch, and untreated control group, n =12 per group). 30 mg of each hemostatic agent was applied to a standard circular liver excision (8 mm in diameter and 3 mm deep) in rats. Following their hemostatic efficacy, in vivo biocompatiblity evaluation was examined. The native potato starch (NPS) group was used as the negative group. RESULTS: Ca2+CPSM had almost the same hemostatic efficacy compared with Arista; meanwhile, all the 4 hemostatic agents had good blood compatibility. In terms of in vivo tissue compatibility, Ca2+CPSM had relatively fast degradation and absorption rate with good histocompatibility. As the morphological, anatomic observation and H&E staining of liver defects after implantation, Ca2+CPSM was almost completely absorbed by liver tissue after 14 days. CONCLUSION: According to our study, Ca2+CPSM could effectively achieve hemostasis in the standard rat liver injury model and exhibited good blood compatibility and in vivo tissue compatibility. These finding suggested that Ca2+CPSM as a new kind of APSH had its extensive clinical application value.


Assuntos
Hemostáticos , Animais , Cálcio/farmacologia , Hemostasia , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Porosidade , Ratos , Ratos Wistar , Amido/farmacologia , Amido/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...